LC 2012 (SET D): PAPER 1

QUESTION 1 (25 MARKS)

Question 1 (a)

$$a^{2} - ab + b^{2} = 3....(Q)$$

 $a + 2b + 1 = 0....(L)$

$$b = -1: a = -2(-1) - 1 = 2 - 1 = 1$$

$$b = \frac{2}{7}: a = -2(\frac{2}{7}) - 1 = -\frac{4}{7} - 1 = -\frac{11}{7}$$

$$a+2b+1=0 \Rightarrow a=-2b-1$$

$$a^2 - ab + b^2 = 3$$

$$(-2b-1)^2 - (-2b-1)b + b^2 = 3$$

$$4b^2 + 4b + 1 + 2b^2 + b + b^2 = 3$$

$$7b^2 + 5b - 2 = 0$$

$$(7b-2)(b+1)=0$$

$$\therefore b = -1, \frac{2}{7}$$

Solutions: $(1, -1), (-\frac{11}{2}, \frac{2}{3})$

MARKING SCHEME NOTES

Question 1 (a) [Scale 15C (0, 8, 14, 15)]

8: • Any attempt at trial and error

• Writes a in terms of b, or b in terms of a, and stops

Any reasonable first step

14: • Solves for one variable (two values), more or less correctly

• Substitutes -2b-1 for a in the non-linear equation and some further progress

• Substitutes $\frac{-a-1}{2}$ for b in the non-linear equation and some further progress

Question 1 (b)

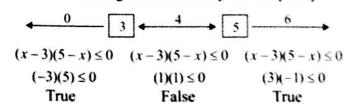
$$\frac{2x-5}{x-3} \le \frac{5}{2}$$

$$\frac{2(x-3)^2(2x-5)}{(x-3)} \le \frac{5 \times 2(x-3)^2}{2} \leftarrow$$

 $\frac{2(x-3)^2(2x-5)}{(x-3)} \le \frac{5 \times 2(x-3)^2}{2}$ Multiply across by $2(x-3)^2$ to get rid of the fractions. By multiplying across by $(x-3)^2$ you are ensuring the By multiplying across by $(x-3)^2$ you are ensuring that you are multiplying across by a positive number.

$$2(x-3)(2x-5) \le 5(x-3)^2$$

$$2(x-3)(2x-5) - 5(x-3)^2 \le 0$$


$$(x-3)[2(2x-5)-5(x-3)] \le 0$$

$$(x-3)[4x-10-5x+15] \le 0$$

 $(x-3)[5-x] \le 0$ — You need to solve this inequality.

(x-3)(5-x)=0 \leftarrow First, find the roots of the equality. $\therefore x = 3.5$

Use the region test to find the regions that satisfy the inequality.

