## Hormone C

The effect of hormone C was to increase the number of small plants and the number of tall plants. The mean was unchanged.



Question 3 (25 MARKS) Question 3 (a)

| Line | Equation                   | Slope                 | Intercepts                                     |
|------|----------------------------|-----------------------|------------------------------------------------|
| h    | x = 3 - y                  | -1                    | (0, 3), (3, 0)                                 |
| i    | 2x - 4y = 3                | $\frac{1}{2}$         | $(0,-\frac{3}{4}),(\frac{3}{2},0)$             |
| k    | $y = -\frac{1}{4}(2x - 7)$ | $-\frac{1}{2}$        | $(0,\frac{7}{4}),(\frac{7}{2},0)$              |
| 1    | 4x - 2y - 5 = 0            | 2                     | $(0,-\frac{5}{2}),(\frac{5}{4},0)$             |
| m    | $x + \sqrt{3}y - 10 = 0$   | $-\frac{1}{\sqrt{3}}$ | $\left(0, \frac{10}{\sqrt{3}}\right), (10, 0)$ |
| n    | $\sqrt{3}x + y - 10 = 0$   | $-\sqrt{3}$           | $(0, 10), \left(\frac{10}{\sqrt{3}}, 0\right)$ |

The line h makes equal intercepts with the x-axis cutting it at 3 units from the origin.



The slope is the tan of the angle with the positive *x*-axis. Tan is negative in the second quadrant.



Lines k and l are perpendicular as the product of their slopes is -1.

Slope of *i*: 
$$m_1 = \frac{1}{2}$$
  
Slope of *k*:  $m_2 = -\frac{1}{2}$   
 $m_1 \times m_2 = \frac{1}{2} \times -\frac{1}{2} = -1$ 

| Line(s) |  |
|---------|--|
| 1       |  |
| 1       |  |
| h       |  |
| m       |  |
| k & 1   |  |
|         |  |

## Question 3 (b)

Slope of 
$$m$$
:  $m_1 = -\frac{1}{\sqrt{3}}$ 

$$\tan \theta = \frac{m_1 - m_2}{1 + m_1 m_2}$$

Slope of 
$$m$$
:  $m_2 = -\sqrt{3}$ 

$$\tan \theta = \frac{-\frac{1}{\sqrt{3}} + \sqrt{3}}{1 - \frac{1}{\sqrt{3}}(-\sqrt{3})} = \frac{-\frac{1}{\sqrt{3}} + \sqrt{3}}{1 + 1}$$

$$=\frac{\left(-\frac{1}{\sqrt{3}}+\sqrt{3}\right)}{1+1}\times\frac{\sqrt{3}}{\sqrt{3}}$$

$$= \frac{-1+3}{2\sqrt{3}} = \frac{2}{2\sqrt{3}}$$

$$= \frac{2\sqrt{3}}{\sqrt{5}}$$

$$\therefore \theta = \tan^{-1} \frac{1}{\sqrt{3}} = 30^{\circ}$$

## Question 4 (25 marks)

## Question 4 (a)

CIRCLE: Centre (h, k), radius r

$$(x-h)^2 + (y-k)^2 = r^2$$

$$c_1:(h, k) = (-3, -2), r = 2$$
  
 $(x-(-3))^2 + (y-(-2))^2 = 2^2$ 

$$(x+3)^2 + (y+2)^2 = 4$$

CIRCLE; Centre 
$$(-g, -f)$$
, radius  $r = \sqrt{g^2 + f^2 - c}$   
 $x^2 + y^2 + 2gx + 2ky + c = 0$ 

$$c_3: x^2 + y^2 - 2x - 2y - 7 = 0$$

$$(-g, -f) = \left(-\frac{-2}{2}, -\frac{-2}{2}\right) = (1, 1)$$

$$r = \sqrt{1^2 + 1^2 - (-7)} = \sqrt{9} = 3$$

| Circle         | Centre   | Radius | Equation                      |
|----------------|----------|--------|-------------------------------|
| c <sub>1</sub> | (-3, -2) | 2      | $(x+3)^2 + (y+3)^2 = 4$       |
| e,             | (1, 1)   | 3      | $x^2 + y^2 - 2x - 2y - 7 = 0$ |