MARKING SCHEME NOTES

Question 4 (b) [Scale 10D (0, 3, 7, 8, 10)]

3: • Either
$$\frac{du}{dx}$$
 or $\frac{dv}{dx}$ correct

- No differentiation but writes $f'(x) = \frac{1}{4}$
- 7: f'(x) correct but not simplified
- 8: Correct values of x from students work

QUESTION 5 (25 MARKS)

Question 5 (a)

$$\int 5\cos 3x \, dx$$
$$= 5 \int \cos 3x \, dx$$
$$= \frac{5}{3} \sin 3x + c$$

FORMULAE AND TABLES BOOK Calculus: Integrals [page 26]

$$\int \cos x \, dx = \sin x + c$$

$$\int \cos(ax + b) \, dx = \frac{1}{a} \sin(ax + b) + c$$

MARKING SCHEME NOTES Question 5 (a) [Scale 5B (0, 3, 5)]

- 3: Some correct integration
 - Integrand does not contain c
 - c only

Question 5 (b) (i)

$$\frac{dy}{dx} = 2x - 2$$

$$\int dy = \int (2x - 2) dx$$

$$y = \frac{2x^2}{2} - 2x + c$$

$$= x^2 - 2x + c$$

FORMULAE AND TABLES BOOK Calculus: Integrals [page 26]

$$\int x^n \, dx = \frac{x^{n+1}}{n+1} + c, \ n \neq -1$$

(-2, 0) is on the curve.

$$y = x^2 - 2x + c$$

$$x = -2$$
, $y = 0 \Rightarrow 0 = (-2)^2 - 2(-2) + c$

$$0 = 4 + 4 + c$$

$$\therefore c = -8$$

$$\therefore y = f(x) = x^2 - 2x - 8$$

Marking Scheme Notes

Question 5 (b) (i) [Scale 10C (0, 5, 7, 10)]

- 5: Some correct integration
 - Integrand does not contain c
 - *c* only

•
$$\frac{dy}{dx} = 2x - 2$$
 or $\frac{dy}{dx} =$ slope of tangent

7: • Substitutes (-2, 0) but c not simplified

Note: $\underline{\text{must}}$ have 'c' in equation to get high partial marks

Question 5 (b) (ii)

$$\overline{f} = \frac{1}{3 - 0} \int_0^3 (x^2 - 2x - 8) dx$$

$$= \frac{1}{3} \left[\frac{x^3}{3} - \frac{2x^2}{2} - 8x \right]_0^3 = \frac{1}{3} \left[\frac{x^3}{3} - x^2 - 8x \right]_0^3$$

$$= \frac{1}{3} \left[\left(\frac{3^3}{3} - 3^2 - 8(3) \right) - 0 \right]$$

$$= \frac{1}{3} [9 - 9 - 24] = -8$$

FORMULA Average value of f $\overline{f} = \frac{1}{b-a} \int_{a}^{b} f(x) dx$

FORMULAE AND TABLES BOOK Calculus: Integrals [page 26]

$$\int x^n \, dx = \frac{x^{n+1}}{n+1} + c, \ n \neq -1$$

MARKING SCHEME NOTES

Question 5 (b) (ii) [Scale 10C (0, 5, 7, 10)]

- 5: Correct formula only
 - Some correct integration
 - Indication of integration with correct limits
 - If only values used e.g. f(0), f(1), f(2) etc. when $0 \le x \le 3$, give Low Partial Credit for two or more values
- 7: Limits inserted into function but not calculated
 - $\frac{1}{(b-a)}$ missing from formula

NOTE:

NO CREDIT – differentiation NO CREDIT – no integration

QUESTION 6 (25 MARKS)

Question 6 (a) (i)

$$T_n = \ln a^n = n \ln a$$

$$T_1 = \ln a$$
, $T_2 = 2 \ln a$, $T_3 = 3 \ln a$

$$T_3 - T_2 = 3 \ln a - 2 \ln a = \ln a$$

$$T_2 - T_1 = 2 \ln a - \ln a = \ln a$$

$$T_3 - T_2 = T_2 - T_1$$

Therefore, T_1 , T_2 and T_3 are in arithmetic sequence.

Question 6 (a) (ii)

$$T_n = \ln a^n = n \ln a$$

$$T_{n+1} = (n+1) \ln a$$

$$T_{n+1} - T_n = (n+1) \ln a - n \ln a$$

$$= n \ln a + \ln a - n \ln a$$

$$= \ln a = \text{Constant}(d)$$

Therefore, the sequence is arithmetic with common difference $d = \ln a$.

FORMULAE AND TABLES BOOK Indices and logs [page 21]

$$\log_a(xy) = \log_a x + \log_a y$$

$$\log_a \left(\frac{x}{y} \right) = \log_a x - \log_a y$$

$$\log_a(x^q) = q \log_a x$$

$$\log_a 1 = 0$$

$$\log_a \left(\frac{1}{x}\right) = -\log_a x$$