QUESTION 3 (25 MARKS)

Question 3 (a)

Number of arrangements of *n* objects, *p* alike of one kind, *q* alike of another kind = $\frac{n!}{p!q!}$

In order to win \in 8 playing Game A four times, John would have hit the following segments: \in 0, \in 0, \in 3 and \in 5, but not necessarily in that order.

How many arrangements can be made of 4 objects, 2 of which are alike?

Number of ways John could win $\epsilon 8 = \frac{4!}{2!} = \frac{4 \times 3 \times 2 \times 1}{2 \times 1} = 12$

MARKING SCHEME NOTES

Question 3 (a) [Scale 10C (0, 3, 7, 10)]

3: • Some reference to €3 and €5

7: • Listing with not more than five omitted

Question 3 (b)

The spinners are redrawn and the values represent the amount the charity would gain for each spin.

Game B

Calculate the expected earnings E(x) for each $\in 3$ bet placed.

Game
$$A: E(x) = \frac{1}{5}(3) - \frac{1}{5}(2) + \frac{1}{5}(3) + \frac{1}{5}(0) - \frac{1}{5}(3) = \frac{3}{5} = \text{@0.60}$$

Game
$$B: E(x) = \frac{1}{6}(3) - \frac{1}{6}(2) + \frac{1}{6}(1) - \frac{1}{6}(1) + \frac{1}{6}(2) + \frac{1}{6}(0) = \frac{3}{6} = \text{€0.50}$$

EXPECTED VALUE
$$E(x)$$

$$E(x) = \sum xP(x)$$

Game B would be more successful at earning money for the charity as its expected earnings are higher per spin.

LC Higher Level Solutions Set B (LC 2014) (© Educate.ie)

MARKING SCHEME NOTES

Question 3 (b) [Scale 5C (0, 2, 3, 5)]

- 2: One partially accurate statement
 - Expected outcome formula
- 3: Correct answer but inaccurate/only partially correct supporting evidence
 - Expected outcome of both Game A and Game B calculated but incorrect or no conclusion.

Question 3 (c)

$$p = P(4) = \frac{1}{6}$$
, $q = P(\text{Not } 4) = \frac{5}{6}$
 $n = 6$, $r = 2$, $p = \frac{1}{6}$, $q = \frac{5}{6}$

$$P(2 \text{ successes}) = {}^{6}C_{2} \left(\frac{1}{6}\right)^{2} \left(\frac{5}{6}\right)^{4} = \frac{3125}{15552} = 0.2$$

BERNOULLI TRIALS

$$P(r \text{ successes}) = {}^{n}C_{r} p^{r} q^{n-r}$$

MARKING SCHEME NOTES

Question 3 (c) [Scale 10C (0, 3, 7, 10)]

- 3: Establishes probability of stopping on €4 sector once
 - Establishes probability of not stopping on €4 sector once
 - Effort to express a relevant binomial expansion
- 7: Omits $\binom{6}{2}$
 - Indices incorrectly assigned