LC 2015 (SET A): PAPER 2

QUESTION 1 (25 MARKS)

Question 1 (a)

W = Win, L = Loss

		Die 2					
		1	2	3	4	5	6
Die 1	1	[2] = L	[3] = L	[4] = L	[5] = L	[6] = L	[7] = L
	2	[3] = L	[4] = L	[5] = L	[6] = L	[7] = L	[8] = L
	3	[4] = L	[5] = L	[6] = L	[7] = L	[8] = L	[9] = W
	4	[5] = L	[6] = L	[7] = L	[8] = L	[9] = W	[10] = W
	5	[6] = L	[7] = L	[8] = L	[9] = W	[10] = W	$[11] = \mathbf{W}$
	6	[7] = L	[8] = L	[9] = W	[10] = W	[11] = W	[12] = W

MARKING SCHEME NOTES

Question 1 (a) [Scale 10C (0, 4, 8, 10)]

- 4: At least one other correct entry
 - Partially correct table with at least 5 correct totals or couples
- 8: Five or more correct entries including at least one other loss and one other win
 - Table correctly completed with totals or couples but no indication of W or L

Question 1 (b) .

$$P(\text{Event}) = \frac{\text{Number of desired outcomes}}{\text{Number of possible outcomes}}$$

(i)
$$P(W) = \frac{\text{Number of wins}}{\text{Number of possible outcomes}} = \frac{10}{36} = \frac{5}{18}$$

(ii)
$$P(L) = \frac{\text{Number of losses}}{\text{Number of possible outcomes}} = \frac{26}{36} = \frac{13}{18}$$

$$P(L \text{ and then } L \text{ and then } L) = \frac{13}{18} \times \frac{13}{18} \times \frac{13}{18} = 0.3767$$

Marking Scheme Notes

Question 1 (b) [Scale 10C (0, 4, 8, 10)]

- 4: Favourable outcomes identified
 - (i) correct only $(\frac{10}{36}, \frac{5}{18}, 0.27, 0.28, 0.3)$
- 8: (i) omitted or of no merit but (ii) $\left(\frac{13}{18}\right)^3$

LC HIGHER LEVEL SOLUTIONS SET A (LC 2015) (© Educate.ie)

Question 1 (c)

This is a possible outcome: L W L L L W L L L W The last W has to happen. The other 9 letters can be in any order. $P(3\text{W's with a W on tenth throw}) = {}^9C_2(\frac{5}{18})^2(\frac{13}{18})^7 \times (\frac{5}{18}) = 0.0791$

MARKING SCHEME NOTES

Question 1 (c) [Scale 5C (0, 2, 4, 5)]

- 2: Relevant binomial formula with some substitution
 - Identifies p^7 or $(1-p)^3$ or $(1-p)^2$ or 1-p
 - Listing at least any two of the ten throws
- 4: Probability of two wins in nine throws