QUESTION 2 (25 MARKS)

Question 2 (a)

Number in the sample n = 100

Mean shopping spend $\bar{x} = 90.45$

Standard deviation $\sigma = 20.73$

$$\bar{\sigma} = \frac{\sigma}{\sqrt{n}} = \frac{20 \cdot 73}{\sqrt{100}} = 2 \cdot 073$$

Confidence interval:

$$\bar{x} - 1.96\bar{\sigma} \leftrightarrow \bar{x} - 1.96\bar{\sigma}$$

$$90.45 - 1.96(2.073) \leftrightarrow 90.45 + 1.96(2.073)$$

FORMULAE AND TABLES BOOK
Statistics and Probability: Sampling
(standard error of the mean) [page 34]

$$\bar{\sigma} = \frac{\sigma}{\sqrt{n}}$$

n = Number in the sample

 σ = standard deviation of the sample

Confidence interval: $\bar{x} - 1.96\bar{\sigma} \leftrightarrow \bar{x} - 1.96\bar{\sigma}$

You can be 95% confident that the mean amount spent was in the range €86·39 < μ < €94·51.

MARKING SCHEME NOTES

Question 2 (a) [Scale 10C (0, 4, 8, 10)]

4: • Relevant formula with or without substitution

• $\frac{1}{\sqrt{n}}$ with further work

8: • $1.96 \times \frac{\sigma}{\sqrt{n}}$ evaluated

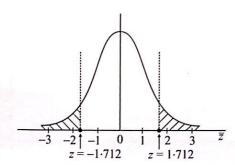
Question 2 (b)

Since the mean μ is in the confidence interval, you cannot reject the null hypothesis.

MARKING SCHEME NOTES

Question 2 (b) [Scale 10D (0, 2, 5, 8, 10)]

- 2: One relevant step e.g. null hypothesis or alternative hypothesis stated
 - Some work towards finding z
 - Mention of ± 1.96
- 5: z calculated
 - Either null or alternative hypothesis stated and relevant work towards finding z
 - Confidence interval from (a) and either null or alternative hypothesis stated
 - Confidence interval based on 100 (i.e. 89.94, 98.06) and either null or alternative hypothesis stated
- 8: z calculated and compared to ± 1.96 but:
 - o Not stating null hypothesis and/or alternative hypothesis correctly
 - o Not accepting or rejecting hypothesis
 - o Incorrect conclusion for hypothesis
 - · Incorrect use of 94 and confidence interval
 - Incorrect use of 90.45 and confidence interval


Question 2 (c)

Mean shopping spend $\bar{x} = 90.45$

Standard error of the mean $\bar{\sigma} = 2.073$

Mean amount spend $\mu = 94$

$$\overline{z} = \frac{\overline{x} - \mu}{\overline{\sigma}} = \frac{90.45 - 94}{2.073} = -1.712$$

FORMULAE AND TABLES BOOK
Statistics and Probability: Probability
distribution (standarding formula) [page 34]

$$\overline{z} = \frac{\overline{x} - \mu}{\overline{\sigma}}$$

n = Number in the sample

 σ = standard deviation of the sample

$$p - \text{value} = 1 - P(\overline{z} < 1.712) + P(\overline{z} < -1.712)$$

$$= 1 - P(\overline{z} < 1.712) + 1 - P(\overline{z} < 1.712)$$

$$= 2(1 - P(\overline{z} < 1.712))$$

$$= 2(1 - 0.9564)$$

$$= 0.0872 > 0.05$$

p-value = 0.0872

Explanation: Because p = 8.72% is greater than 5% there is not a significant difference between the sample mean and the population mean. Any difference may be due to chance.

MARKING SCHEME NOTES

Question 2 (c) [Scale 5C (0, 2, 4, 5)]

- 2: Effort at finding P(z < -1.71)
- 4: p value correct
 - · Not contextualising answer correctly