Answer all three questions from this section.

Question? Oct 6

(55 marks)

A glass Roof Lantern in the shape of a pyramid has a rectangular base *CDEF* and its apex is at *B* as shown. The vertical height of the pyramid is |AB|, where *A* is the point of intersection of the diagonals of the base as shown in the diagram. Also |CD| = 2.5 m and |CF| = 3 m.

(a) (i) Show that |AC| = 1.95 m, correct to two decimal places.

(ii) The angle of elevation of B from C is 50° (i.e. $|\angle BCA| = 50^{\circ}$). Show that |AB| = 2.3 m, correct to one decimal place.

(iii) Find |BC|, correct to the nearest metre.

(iv) Find $|\angle BCD|$, correct to the nearest degree.

Find the area of glass required to glaze all four triangular sides of the pyramid. Give your answer correct to the nearest m².

Aea
$$\triangle$$
 BCD = $\frac{1}{2}$ absinC
= $\frac{1}{2}$ (3)(2.5) sin 65°
= 3.4
Aea \triangle BFC $\frac{1}{2}$ (3)(3) sin 60°
= $\frac{1}{2}$ (3)(3) sin 60°
= $\frac{1}{2}$ (3)(3) sin 60°
= $\frac{1}{2}$ (3)(4) + 2(3.9)
= 14.6
 2 (15 m²)

(b) Another Roof Lantern, in the shape of a pyramid, has a square base CDEF. The vertical height |AB| = 3 m, where A is the point of intersection of the diagonals of the base as shown.

The angle of elevation of B from C is 60° (i.e. $|\angle BCA| = 60^{\circ}$).

Find the length of the side of the square base of the lantern. Give your answer in the form \sqrt{a} m, where $a \in \mathbb{N}$.

