The height of the water in a port was measured over a period of time. The average height was found to be 1.6 m. The height measured in metres, h(t), was modelled using the function

$$h(t) = 1.6 + 1.5 \cos\left(\frac{\pi}{6}t\right)$$

where t represents the number of hours since the last recorded high tide and $\left(\frac{\pi}{6}t\right)$ is expressed in radians.

(a) Find the period and range of h(t).

Period:	=	211	=	1124000
		T		
		6		

Range:	11-6-1,5	1.6+1.5/	=	10112	3
		J		L	1

(b) Find the maximum height of the water in the port.

 height	Γ	3.1m)		
	<u> </u>		,		

(c) Find the rate at which the height of the water is changing when t = 2, correct to two decimal places. Explain your answer in the context of the question.

Rate: d	h = -	1.5 50	$\left(\frac{\pi}{6}t\right)$	$\left(\frac{\pi}{6}\right)$	
£=2	=>	-/-5	$\sin\left(\frac{\pi}{6}\right)$	(2) $\left(\frac{1}{6}\right)$	
		=	168 m	1/4	
Explanation:	The	cide i	و م	j ort.	
The	Later	is L	gair	g out.	9 0.684
pe	how	al	Zan.		Previous page running

			h(t) =	= 1.6 +	$1.5\cos\left(\frac{\pi}{6}\right)$	t)			
Time	Midnight	3 a.m.	6 a.m.	9 a.m.	12 noon	3 p.m.	6 p.m.	9 p.m.	Midnight
t (hours)	0	3	6	9	12	15	18	21	24
h(t) (m)	3.1	1.6	0-1	1-6	3 - 1	1-6	0.1	1.6	3.1

Sketch the graph of h(t) between midnight and the following midnight. (ii)

Time

(e) Find, from your sketch, the difference in water height between low tide and high tide.

Différence = 3-1-0.1 = [3 m]

(f) A fully loaded barge enters the port, unloads its cargo and departs some time later. The fully loaded barge requires a minimum water level of 2 m.

When the barge is unloaded it only requires 1.5 m.

Use your graph to estimate the **maximum** amount of time that the barge can spend in port, without resting on the sea-bed.

From	graph:	citer	port	around	9.30
		leave	port	aroud	15-15
		. Time =	5h	-45 min	noughly

revious	page	running