QUADRATIC EQUATIONS

There are three usual methods for solving quadratics

- 1. Factorising
- 2. Quadratic Formula
- 3. Completing the Square

We call the answers to a quadratic equation the roots of the equation

FACTORISING

Exercise 1.

Find the solutions to the equations:

(i)
$$(x+2)(x-1)=0$$

(v)
$$x(x+3) = 0$$

(ix)
$$(x-6)^2 = 0$$

(ii)
$$(x-3)(x+1)=0$$

(vi)
$$2x(x-3)=0$$

(x)
$$(2x-7)^2=0$$

(iii)
$$(x+4)(x-2)=0$$

(vii)
$$(2x-1)(2x-5)=0$$

(iv)
$$x(x-2) = 0$$

(viii)
$$(2x-9)(2x+3)=0$$

Exercise 2.

Factorise and solve the equations:

(i)
$$x^2 - 2x = 0$$

(viii)
$$7x^2 - 175 = 0$$

$$(xv) 2x^2 + 3x + 1 = 0$$

(ii)
$$2x^2 + x = 0$$

(ix)
$$x^2 - \frac{1}{25} = 0$$

(xvi)
$$3x^2 - 4x + 1 = 0$$

(ix)
$$x^2 - \frac{1}{25} = 0$$

(x) $9x^2 - \frac{1}{9} = 0$

(xvii)
$$7x^2 + x - 8 = 0$$

(iii)
$$5x^2 - 15x = 0$$

(iv) $2x^2 + 4x = 0$

(xi)
$$16x^2 - \frac{1}{64} = 0$$

(xviii)
$$2x^2 + x - 15 = 0$$

(v)
$$x^2 + \frac{1}{2}x = 0$$

(xii)
$$x^2 - 5x + 6 = 0$$

(xix)
$$2x^2 + 16x - 66 = 0$$

(vi)
$$x^2 - 16 = 0$$

(xiii)
$$x^2 - 2x - 15 = 0$$

$$(xx) \qquad 3x^2 + 16x - 12 = 0$$

(vii)
$$9x^2 - 16 = 0$$

(xiv)
$$x^2 + 8x - 33 = 0$$

Exercise 3.

(iv)

Tidy up, factorise and solve the following:

(i)
$$x(x+24)=0$$

(viii)
$$(x+5)(x+6) = 6$$

(ii)
$$x(2x+7)+6=0$$

(ix) Solve
$$x^2$$

(iii)
$$(x+3)(x+5) = 3 + x$$

Solve
$$x^2 - 6x + 5 = 0$$
. Hence, find
the values of t for which

(iv)
$$(2x-3)(x+4) = 3+4x$$

$$(t-2)^2-6(t-2)+5=0.$$

(v)
$$2x-2(x-1)=x(x-1)$$

(x) Solve
$$x^2 - 29x + 100 = 0$$
. Hence,

(vi)
$$2x(x-4)+4x+5=3(x+3)$$

solve
$$y^4 - 29y^2 + 100 = 0$$
.

(vii)
$$5(2x^2-3x-2) = 3(x^2-6x-2)$$

QUADRATIC FORMULA

The Quadratic Formula uses the "a", "b", and "c" from " $ax^2 + bx + c$ ", where "a", "b", and "c" are just numbers:

For
$$ax^2 + bx + c = 0$$
, the values of x are given by: $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$

Exercise 4.

Write each of the following in their simplest form: - "Show your work first and then test using vour calculator"

$$\sqrt{18}$$
, $\sqrt{48}$, $\sqrt{72}$, $\sqrt{98}$, $\sqrt{45}$, $\sqrt{80}$, $\sqrt{125}$

Exercise 5.

Use the quadratic formula to solve the following. "Give your answers in their simplest form"

(i)
$$x^2 - 4x + 2 = 0$$

(vii)
$$4x^2 - 4x - 7 = 0$$

(xiii)
$$5 = x(3x + 14)$$

(ii)
$$x^2 - 2x - 7 = 0$$

(viii)
$$2x^2 - 2x - 1 = 0$$

(xiv)
$$18 + 5x^2 = 33x$$

(iii)
$$x^2 - 8x - 1 = 0$$

(ix)
$$4x^2 - 8x + 1 = 0$$

(xv)
$$21x^2 + 22x + 5 = 0$$

(iv)
$$x^2 - 6x + 4 = 0$$

(x)
$$x^2 - 6x + 1 = 0$$

(xvi)
$$(x+4)(x-1) = -5$$

(v)
$$x^2 + 2x - 1 = 0$$

$$(xi) \quad x^2 - 4x = 0$$

$$(xvii)(x+6)(x+2)=13$$

(vi)
$$x^2 + 4x + 1 = 0$$

(xii)
$$3x^2 = 5x$$

Exercise 6.

Tidy up the following and solve for the variable, x:-

Method:

- Factorise the denominator, if needed. 1.
- Multiply all terms by the common denominator 2.
- Multiply out any brackets
- Tidy up! 4.
- Solve the quadratic 5.

(i)
$$x^2 = \frac{3x+5}{6}$$

(vi)
$$\frac{4}{(x+6)(x+4)} - 7 = \frac{2}{x+4}$$

(ii)
$$\frac{3}{x} + \frac{6}{x+2} = 2$$

(vii)
$$\frac{1}{4x^2-1} - \frac{x}{2x+1} = 0$$

(iii)
$$\frac{1}{x} = 2 - \frac{2}{x+1}$$

(viii)
$$\frac{x(x-7)}{x-5} + \frac{10}{x-5} = \frac{x}{2}$$

(iv)
$$\frac{9}{20} - \frac{1}{x} = \frac{1}{x+1}$$

(ix)
$$\frac{x-5}{16x^2+8x-3} + \frac{1}{12} + \frac{1}{4(4x+3)} = 0$$

(v)
$$\frac{x+10}{x-5} - \frac{11}{6} = \frac{10}{x}$$

(x)
$$\frac{6-4x}{x^2-9} + \frac{3}{x+3} + \frac{2x}{x-3} = 0$$

COMPLETING THE SQUARE

Exercise 7.

Which of the following are Perfect squares: (Place a ✓or an ※)

(i)
$$x^2 - 8x + 16$$

(v)
$$x^2 - 16x + 64$$

(ix)
$$x^2 + 11x + 91$$

(ii)
$$x^2 + 4x + 4$$

(vi)
$$x^2 - 7x + 49$$

(x)
$$x^2 - 3x + \frac{9}{4}$$

(iii)
$$x^2 - 10x + 25$$

(vii)
$$x^2 + 14x + 49$$

(xi)
$$x^2 - 9x + \frac{81}{4}$$

(iv)
$$x^2 + 20x + 100$$

(viii)
$$x^2 - 12x + 36$$

$$(xii) x^2 + 10x - 2$$

Exercise 8.

By completing the square, solve the following quadratic equations

(i)
$$x^2 - 4x - 10 = 0$$

(ii)
$$x^2 + 6x - 20 = 0$$

(iii)
$$x^2 - 5x + 2 = 0$$

(iv)
$$x^2 + 7x - 3 = 0$$

(v)
$$2x^2 - 5x - 7 = 0$$

(vi)
$$3x^2 - 4x - 11 = 0$$

(vii)
$$3x^2 + 5x - 12 = 0$$

(viii)
$$4x^2 + 5x - 13 = 0$$

(ix)
$$x^2 - 4x + 7 = 0$$

(x) $x^2 - 8x + 7 = 0$

(xi)
$$x^2 - 10x - 2 = 0$$

(xii)
$$x^2 + 10x + 13 = 0$$

Word Equations

Exercise 9

Julius garuell.

- 2. A window has a height that is $\frac{4}{3}$ times longer than its width. If the area of the window is 192 m², what are the dimensions of the window?
- 3. The length of a rectangle is 8 cm less than twice its width. If the area of the rectangle is 120 cm², what is the length of the diagonal, leaving your answer in surd form?
- 4. In a right-angled triangle, the length of the hypotenuse is 10 cm. Of the two shorter sides, one side is 2 cm longer than the other side.
 - (i) Find the lengths of the two shorter sides.
 - (ii) Hence, find the area of the triangle.
- 5. A garden measuring 12 m by 16 m is to have a pedestrian pathway installed all around it, increasing the total area to 285 m².

What will be the width of the pathway?

- 6. A rectangular garden is 30 m long and 20 m wide. A path of uniform width is set around the edge that reduces its area to 375 m². What is the width of the path?
- 7. A rectangular garden measures 20 m by 30 m. A pathway is laid around the garden that reduces its area by 264 m². How wide is the pathway?
- 8. The sum of the areas of two circles is 106π cm² and the radius of the larger circle is 4 cm longer than the radius of the smaller circle. Find the lengths of the radii.
- 132 chocolates are equally divided among a number of people at a party. If the number of chocolates that each receives is one more than the number of people, find how many people were at the party.
- 10. You have to make an open square-bottomed box with a height of 3 cm and a volume of 75 cm³. To do this, you will take a square piece of cardboard, cutting 3 cm squares from each corner, scoring between the corners and folding up the edges. Find the dimensions of the cardboard.
- A rectangular piece of cardboard is 2 cm longer than it is wide. From each of its corners, a square piece 2 cm on a side is cut out. The flaps are then turned up to form an open box that has a volume of 70 cm³. Calculate the dimensions of the cardboard.
- 13. The perimeter of a triangle is $\frac{17x}{24}$ and the lengths of two of the sides are $\frac{3x}{8}$ and $\frac{2x-5}{12}$. Find the length of the third side in terms of x.
- 14. The perimeter of a rectangle is $\frac{14x}{15}$ and the measure of each length is $\frac{x+2}{3}$. Find the measure of each width in terms of x.
- 15. The numerator of a fraction is 8 less than the denominator of the fraction.
 - (i) If the numerator is x, write the denominator in terms of x.
 - (ii) If this fraction can be broken down to be $\frac{3}{5}$, write an equation to represent this information and hence solve for x.
 - (iii) Write down the fraction.

Quadratic Graphs

Exercise 10

Find the coordinates of the points where the quadratic function crosses the x and y axis and hence sketch the graph:

(i)
$$x^2 + 7x + 10 = y$$

(ii)
$$x^2 + 3x - 4 = y$$

(iii)
$$2x^2 - 18 = y$$

(iv)
$$-x^2 + 7x - 10 = y$$

(v)
$$-3x^2 - 7x + 10 = y$$

(vi)
$$2x^2 + 3x - 14 = y$$

(vii)
$$x^2 - 8x + 16 = y$$

(viii)
$$-x^2 + 9x - 14 = y$$

(ix)
$$-2x^2 + 6x + 8 = y$$

Exercise 11

Construct a quadratic equation given the following roots:

(ii) -3, -4 (iii)
$$\frac{1}{2}$$
, 3 (iv) $\frac{1}{3}$, $-\frac{1}{2}$ (v)-4, 3

(iv)
$$\frac{1}{3}$$
, $-\frac{1}{2}$

(vi)
$$\frac{2}{3}$$
, $-\frac{2}{3}$

Exercise 12

- 11. Prove that the roots of the equation $x^2 2px + (p^2 q^2) = 0$ are real for all $p, q \in \mathbb{R}$.
- 12. Prove that the roots of the equation $x^2 (a+d)x (c+b)^2 = 0$ are real for all $a, b, c, d \in \mathbb{R}$.
- 13. Prove that the roots of the equation $kx^2 + (3-2k^2)x 6k = 0$ are real for all $k \in \mathbb{R}$. Express these roots in terms of k.
- 14. Prove that the roots of the equation

$$px^2 - (p+q)x + q = 0$$

are real for all $p, q \in \mathbb{R}$. Express these roots in terms of p and q.

15. Show that the roots of the equation

$$px^2 + (2p - q)x - 2q = 0$$

are real for all $p, q \in \mathbb{R}$. Express these roots in terms of p and q.

16. If the roots of the equation

$$x^2 - 2ax + b - 4a^2 = 0$$

are equal, express b in terms of a.

- 17. Determine the values of $k \in \mathbb{R}$ if the roots of the equation $(3k+4)x^2 - (3k-1)x + 4 = 0$ are equal.
- 18. (i) Solve the equation $x^2 - 8x + 12 = 0$.
 - (ii) Hence, find the solutions of the equation $(x^2 + x)^2 8(x^2 + x) + 12 = 0$.
- **19.** (i) Solve the equation $2x^2 5x 12 = 0$.
 - (ii) Hence, find the solutions of the equation $2(3t+1)^2 5(3t+1) 12 = 0$.
- **20.** (i) Solve the equation $x^2 13x + 36 = 0$.
 - (ii) Hence, find the solutions of the equation $x^4 13x^2 + 36 = 0$.
- **21.** (i) Solve the equation $x^2 18x + 72 = 0$.
 - (ii) Hence, find the solutions of the equation $(x^2 + x)^2 + 72 = 18(x^2 + x)$.