

7009

Prove that |pr| = 3|rq|.

qr pr	$v = u + ft$ $v = 0 + 2g$ $v = u - 2g$ $\Rightarrow 2v = u$		5	
qr pr	$v^{2} = u^{2} + 2fs$ $v^{2} = 0 + 2g qr $ $v^{2} = u^{2} - 2g pr $ $v^{2} = 4v^{2} - 2g pr $ $3v^{2} = 2g pr $	Pr = 342	5	
	3(2g qr) = 2g pr $3 qr = pr $	pr=3(qr)	5	20

pr
$$4g^{2} = 16g^{2} - 2g|pr|$$

$$\Rightarrow |pr| = 6g$$

$$3|qr| = |pr|$$

2009 6

$$\frac{1}{t_1} = d$$

Av. speed=
$$\frac{d}{t_1+t_2} = \sqrt{\frac{d}{3}}$$

$$t_1:t_2 = 21:f$$

$$t_2 = \frac{2}{3}T \qquad t_2 = \frac{1}{3}T$$

1st but
$$V = u + at$$
 $V = 0 + \int_{3}^{2} T$
 $V = \int_{3}^{2} T$

Area:
$$\frac{1}{2}(f)\int_{3}^{2}T = d$$

$$\int_{3}^{7}T^{2} = d$$

$$\frac{1}{3}\left(\frac{d'}{d/3}\right) = d$$

$$\frac{1}{3}\left(\frac{3d}{3d}\right) = d'$$

$$\frac{d}{T} = \int_{3}^{d}$$

(sfind f)

- 1. (a) A car is travelling at a uniform speed of 14 m s⁻¹ when the driver notices a traffic light turning red 98 m ahead.
- Find the minimum constant deceleration required to stop the car at the traffic light,
 - (i) if the driver immediately applies the brake
 - (ii) if the driver hesitates for 1 second before applying the brake.

(i)
$$v^{2} = u^{2} + 2 f s$$
$$0 = 14^{2} + 2 f (98)$$
$$196 f = -196$$
$$\Rightarrow f = -1 \text{ m s}^{-2}$$

(ii)
$$s = ut + \frac{1}{2} ft^2$$

$$s = 14(1) + 0$$

$$s = 14$$

$$v^{2} = u^{2} + 2 fs$$

$$0 = 14^{2} + 2 f (98 - 14)$$

$$0 = 14^{2} + 168 f$$

$$f = \frac{-196}{168}$$
$$= -\frac{7}{6} \text{ or } -1.17 \text{ m s}^{-2}$$

20

5

5

5

5

1. **(b)** A particle passes P with speed 20 m s⁻¹ and moves in a straight line to Q with uniform acceleration.

In the first second of its motion after passing P it travels 25 m.

ZO(O In the last 3 seconds of its motion before reaching Q it travels $\frac{13}{20}$ of |PQ|.

Find the distance from P to Q.

$$PX$$

$$s = ut + \frac{1}{2} ft^{2}$$

$$25 = 20(1) + \frac{1}{2} f(1)^{2}$$

$$5 = \frac{1}{2} f$$

$$\Rightarrow f = 10$$

$$S = ut + \frac{1}{2} ft^{2}$$

$$\frac{7}{20} |PQ| = 20(t+1) + 5(t+1)^{2}$$

$$= 5t^{2} + 30t + 25$$

$$PQ s = ut + \frac{1}{2} ft^{2}$$

$$|PQ| = 20(t+4) + 5(t+4)^{2}$$

$$= 5t^{2} + 60t + 160$$

$$\frac{7}{20}|PQ| = 5t^2 + 30t + 25$$

$$\frac{7}{20}(5t^2 + 60t + 160) = 5t^2 + 30t + 25$$

$$65t^2 + 180t - 620 = 0$$

$$\Rightarrow t = 2$$

$$|PQ| = 20(6) + 5(6)^2$$

= 300 m

5